
PHYSICA L HEVIE W D VOLUME 10, NUMBE 8 1 1 JU LY 1974

Dual model with Mandelstam analyticity for deep-inelastic
electroproduction and annihilation*

G. Schierholz~ and M. G. Schmidt~
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

{Received 31 December 1973)

We present a dual model for virtual Compton amplitudes which satisfies the current-algebra constraints
and exhibits Mandelstam analyticity. Mandelstam analyticity is crucial for making any contact to the
deep-inelastic annihilation region, i.e., s, q', q'-+ oc, and is accomplished by introducing nonlinear
trajectories. The scaling properties of this model are mainly shaped by the current-algebra constraints.
In terms of dual variables, the scaling limit occurs from the same configuration as the current-algebra
fixed pole. We deal with two different choices of the trajectory. One gives back all the nice properties
of the original Veneziano model. The other is inspired by the experimental finding of power behavior
in large-angle scattering and its theoretical elucidation, the interchange model which requires
asymptotically constant trajectories. The first choice leads to a light-cone representation and exhibits a
new relation between the large-x behavior of the deep-inelastic annihilation structure function and the
asymptotic behavior of the electromagnetic {2+) (1 ) transition form factor.

I. INTRODUCTION

Since Bloom and Gilman' observed that the struc-
ture function vW, (v, q') for inelastic electron-
proton scattering is dual in the sense that the scal-
ing limit mediates the resonance region, it has
been a constant task to construct dual current
amplitudes in respect to the deep-inelastic phe-
nomena. ' '

The most direct approach to include currents
in dual hadronic amplitudes is to employ the min-
imal electromagnetic coupling principle in the
dual operator formalism, '' as in ordinary field
theory, which, however, leads to certain nondual
features. ' Another approach in the dual operator
formalism stresses the factorization aspect in the
construction of off-shell photon amplitudes. ' In
all these models the spectrum is not realistic and

up to now current algebra and low-energy theorems
are not fulfilled.

A second and more phenomenological approach
is based on suitable modifications of the (known)
hadronic n-point functions of the generalized
Veneziano model. ' In the most veritable of these
models (in our opinion) the (off-mass-shell) cur-
rents are constructed from pairs of fictitious par-
ticles ("spurions") corresponding, e.g. , to a six-
point function for Compton scattering. The tra-
jectories in mixed ("spurion"-hadron) channels
are set constant in order that the amplitude does
not depend on the corresponding channel energy. "'"
These constant trajectories give rise, of course,
to fixed poles in addition to Regge behavior in all
channels. But we shall see that fixed poles are
indeed required by current algebra and power be-
havior of the electromagnetic elastic and transi-

tion form factors.
This second approach is, however, not without

its difficulties. Current algebra is generally not
satisfied in these models and any attempts so far
made to fulfill the current-algebra constraints
seem to have no general validity. " Furthermore,
these models are far from being convincing for
the discussion of deep-inelastic electron scattering
and annihilation as they lack Mandelstam analy-
ticity, This is common to all Veneziano-type mod-
els with linearly rising trajectories' and means
that the structure functions can only be explored
in a limited kinematical region. There is, e.g. ,
little hope to get sense out of these models in the
domain of deep-inelastic electron-positron anni-
hilation, which will become accessible experi-
mentally with the advent of the new generation of
electron-positron storage rings, SPEAR and DQRIS.
But even in the deep-'nelastic scattering region
some of these models have very peculiar effects.
The deep-inelastic scattering structure function
derived by Landshoff and Polkinghorne, ' who man-

aged to fulfill all the current-algebra constraints,
does not, e.g. , have the proper Regge limit and

violates the Drell-Yan relation. "
In this paper we shall present a dual model of

the second category, but with Mandelstam analy-
ticity built in right from the beginning. This is
accomplished by introducing nonlinear trajecto-
ries, '4 which is necessary in order to make con-
tact with the deep-inelastic annihilation region,
i.e „, s, q', g" - +~. The current-algebra con-
straints will play an important role in this dis-
cussion. As we shall see, current algebra shapes
the scaling properties of this model to a large
extent. "
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II. COMPTON AMPLITUDES

%e consider Compton scattering of neutral or
charged isoveetor photons off pions:

r„"(q)+s'(p) -1.'(q')+ v'(p') (2.1)

Isoscalar photons are not taken into account for
the moment but mill be discussed later. The scat-
tering amplitude is given by

In order to avoid spin complications me shall
restrict our discussion to a pion target. %e be-
lieve that our conclusions can be carried over to
the spin--, case without serious difficulties.

The paper is organized as follows. In Sec. II
and the Appendix me discuss the basic properties
of pion Compton amplitudes. In particular, we
give an explicit construction of the invariant am-
plitudes fulfilling the current-algebra constraints.
One of our results is that the divergence condition
can be satisfied by any model amplitude in a very
simple (and generalizable) way. In Sec. III we give
a brief review of dual amplitudes satisfying
Mandelstam analyticity and consider tmo extreme
Ansiitze for the trajectory and the residue function
which mill lead us to tmo models for the Compton
scattering amplitude in Sec. IV. Both models have
nice analytic properties and there is good reason
to believe (at least for the first model) that we
have obtained a realistic solution to the problem
of constructing dual Compton amplitudes. After
having discussed the scaling properties of these
models, we give a brief discussion of our results
and some concluding remarks in Sec. V.

T",„~ =2[C„,(s, t)+C„„(u,t)] —V,„,
T~„'J =C„„(s,t) —C„„(u,t),

Tt'J = - [C„„(s,t) + C,„(u, t)] + 2A„, ,

where (n, = p +p ')

C~„(s, t) = T„,"

(2.3)

= t „n.„A(s, t) + q,'q„f3(s, t) + ~ ~ ~, (2.5)

representing neutral Compton scattering off n'.
The hypothesis of conserved vector currents and

of current algebra requires T~", to have the fol-
lowing properties:

qQ y(0, 2) y(0, 2) V

PV PV

(2.6)
q" T„"„'= Tt,"q'~ =2~„F(t)

or equivalently

q "C„,(s, t) = C„„(s,t) q'" = a„F(t),
q "N~v =N~v q'" = 0,

(2.7a)

(2.7b)

where F(t) is the electromagnetic form factor of
the pion. In terms of the invariant amplitudes the
current-algebra requirement (2.7a) gives rise to
the following constraint" (the so-called divergence
condition):

=b,„b.,A(s, t)+q„'q, B(s, t)+ ~ ~ ~, (2.4)

i.e., the amplitude corresponding to charged
Compton scattering off m', and

T„"L'=t d'xe'"* e(x)
A(s, t)=, for (2 8)

x(v'(p'} l [j (&),j„(0)]I v'(p)& . (2.2)

It may be expanded in terms of t-channel isospin
amplitudes"' " (the upper index labeling the iso-
spin},

In the Appendix we shall give a construction of
the tensor amplitudes C„„and N„„, assuming the
divergence condition (2.8).

The constraint (2.8) can be accomplished for
any model amplitude by setting

A(s, t; q', q") — ', +[A(s, t; q', q") —A(s, q', q', 0) F(q")

-A(s, q"; 0, q") F(q') +A(s, 0; 0, 0) F(q') F(q")], (2.9)

mhich clearly exposes the exceptional role of the
Born term. ' This is not the only possible rep-
resentation satisfying the divergence relations,
but (in the framework of our construction scheme}
it is the only one which is consistent with the cur-
rent-algebra fixed pole that we shall discuss nom.

On the further assumption that the invariant
amplitudes A, 8, . . . satisfy unsubtracted dispersion
relations in s, it has been shown'9'" that A(s, t}

must have a fixed pole,

A(s, t) = t
(2.10)

whose residue is independent of q' and q". While
the divergence relations can be fulfilled explicitly
(see the Appendix), the current-algebra fixed pole
(2.10) imposes decisive restrictions on the dynam-
ics of Compton amplitudes. " Any model amplitude
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(2.12)

i.e., oi -0 [note that Eq. (2.12) is identically ful-
filled at q' =0]. In order that Eq. (2.12) hold,
A, (s, t = 0) + q'A, (s, t = 0) (and similarly the com-
bination of invariant amplitudes belonging to N„„'
for the definition of A „A, see the Appendix)
must vanish in the scaling limit. " This combina-
tion corresponds to the helicity amplitude Coo (for
longitudinal polarized photons), i.e.,

Coo ~ q (A~ +q A~) (2.13)

lf we now assume that C~ has no Kronecker 5's,
the highest fixed pole that may occur in A, + q'A,
has J'= —I corresponding to the largest nonsense

A has to definitely include the fixed pole (2.10) ir-
respective of the divergence conditions. It is
evident that the fixed-pole contribution will not
be altered by passing to expression (2.9).

After having discussed the current-algebra im-
plications, we shall proceed in our task to con-
struct a dual amplitude for pion Compton scatter-
ing. To be more specific, by this we understand
to construct invariant amplitudes A, S, . . . ,2,
8, . . . , having the following properties:

(i) divergence condition (2.8) (this can, however,
be explicitly fulfilled},

(ii) current-algebra fixed pole (2.10),
(iii) vector-meson dominance (at the vector me-

sonpole, i.e., q2 =q" =m~2, the amplitudes are
reduced to ordinary dual hadronic amplitudes),

(iv) Regge behavior and particle spectrum (the
amplitudes contain resonances on Regge trajec-
tories and duality between s and t channels),

(v) factorization (we here require factorization
only at the pion pole in order to consistently re-
store the right current-algebra fixed-pole residue),
and

(vi) Mandelstam analyticity (with the advent of
dual models with Mandelstam analyticity, ' we feel
that this requirement is not too ambitious).

In the following we shall mainly be concerned
with the invariant amplitudes A(s, t) and A(s, t).
They are related to the familiar forward Compton
scattering amplitude T,(s, q') by (q' = q")

T, (s, q') = [A(s, t) +A(u, t)] -A,
(2.11}

T; (s, q') =A .

As we shall see, T,(s, q') is to a great extent
shaped by the current-algebra constraints on
A(s, t), whereas T,(s, q') involves all the other in-
variant amplitudes which lack in similar restric-
tions. However, without going into detailed cal-
culations, we still have arguments leading to the
experimental result

point. In the context of our model this means (as
will become clear in Sec. Ip)

1
Aj+q A5 +

2q2~~ q
(2.14)

which proves Eq. (2.12) (under similar consider-
ations for N~). Actually this is a result of the
fact that the mixed channel "trajectory" c, (to be
introduced later), which governs the fixed pole
and scaling limit, is restricted to c2 ~0 by the
requirement of no Kronecker 5's.

From Eq. (2.3) and the corresponding s-channel
isospin amplitudes

TqJ = —2Cq, (u, t) +3'„,
T '„t'„=2C„„( st)+C„„(u, t) -2N„, , (2.15)

it is apparent, within the context of the dual res-
onance model, that once we have constructed A(s, t)
then A(s, t) is determined, apart from possible su
terms. Assuming that there are no exotic reso-
nances, we obtain that A(s, t) is a pure st term
and

A(s, t) = —,'[A(s, t)+A(u, t)+A'(s, u)j, (2.16)

So we are left with the construction of only the
amplitude A. In Sec. IV we shall associate the
scaling functions with this amplitude. The physical
scaling functions are then given by Eqs. (2.16) and
(2.17).

%e shall base our construction of the invariant
amplitudes on the dual model proposed by Ademollo
and Del Giudice" and Ohba" except for the fact
that Mandelstam analyticity will be built in from
the beginning. Before we go into details we would
like to discuss certain aspects of dual amplitudes
with Mandelstam analyticity.

where the su term A' must cancel the pion pole
term in A(s, t) and A(u, t) (i.e., must have equal
strength but opposite sign). In the following we
shall not discuss Su terms any further since they
do not contribute to the fixed pole' and, because
of the intimate relation between fixed pole and
scaling limit in our model, not to the scaling func-
t:ions.

So far we only have taken isovector currents
into account. By use of crossing, SU(3), nonexot-
icity, and the (experimentally well-justified) hy-
pothesis of U-spin conservation in electromagnetic
interactions (i.e., the photon is a U-spin scalar)
we now can calculate the contribution of isoscalar
currents. " %e find a contribution T~~",

= —, N„„, which finally gives

T,' (s, q') = [A(s, t) +A(u, t) J
——A,

(2.17)
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III. DUAL AMPLITUDES WTH MANDELSTAM
ANALYTICITY

As is well known, the Regge trajectories in the
Veneziano-type amplitudes must be linear in the
Mandelstam variables in order not to introduce
ancestors. This results in an infinite set of zero-
width resonances which destroy Hegge behavior
on the positive real axis. The question then is how

to shift the resonance poles to the second sheet,
keeping as much of the good properties of the
Veneziano-type amplitudes as possible.

Several authors proposed the following general-
ization of the Veneziano amplitude" (the extension
to n-point functions is straightforward):

1

M(s, t) = dxx +'*' '(1 —x) ""*' '
0

where

xf(t, x)f(s, 1 —x), (3.1}

(3.2}

(3.3)

This Ansatz allows nonlinear trajectories without
having ancestors so that o(t), o.(s) and f(t},f(s)
can now be considered as general real analytic
functions with a cut on the positive real axis start-
ing at t=t„s =s, . For n(u, x) &Cdu it has been
shown" that Eq. (3.1) has Mandelstam analyticity
and Hegge behavior as ls I

-~ (i.e., in all direc-
tions of the s plane). The price one has to pay
for this, however, is to definitely go off from an
infinite number of observable resonances lying on
the same Regge trajectory. Here resonances are
characterized as complex poles on the second
sheet near the real axis.

Mandelstam analyticity becomes particularly
important in dealing with the deep-inelastic struc-
ture functions, as we shall see. Before we now

adopt these methods to construct dual two-current
amplitudes, we shall consider two different para-
meterizations of the Regge trajectories n and the
residue function f.

Model A:

in the limit a'-1. Model B [i.e., the original
CTHKZ (Cohen- Tannoudji-Henyey-Kane-
Zakrzewski) mode12'], with asymptotically con-
stant trajectories and residue function f4l, is
inspired by the fact that the high-energy large-
angle scattering amplitude has power behavior (note
that the original Veneziano model gives an expo-
nential behavior). One of the authors'-" has demon-
strated a resemblance between this model (model
B) and the interchange model of Gunion, Brodsky,
and Blankenbecler. " The most unorthodox feature
of model B is that it includes some notion of "short
range" forces, taken care of by the residue func-
tion f, in contrast to the usual dual models basi-
cally describing "long range" effects. %hen ex-
tended to n-point functions model B does, however,
not factorize anymore beyond the lowest-order
pole.

Owing to the asymptotically constant trajectories
model B gives rise to fixed poles. The same holds
true in model A if n'(t)-I-n —a(0)]/t for t-~.
This can, however, be cured by introducing sec-
ondary nonleading trajectories as found in the
interchange model 2'

IV. THE MODEL

%'e now shall extend these ideas to two-current
amplitudes. %e imagine that the currents are
coupled to pairs of outer leptons as shown in Fig.
1, and, corresponding to this picture, we write a
dual six-point function Ansatz for the invariant
amplitudes. In order that this Ansatz be consistent
with a two-current amplitude we choose constant
trajectories in the mixed lepton-hadron channels
so as to eliminate the dependence on the corre-
sponding channel energies. " " The technique of
how to construct dual six-point functions is stan-
dard. In the following we shall present two models
according to our different choices of the Hegge
trajectory and residue function as discussed in
Sec. III.

Model A. According to our first choice we are
concerned with the Ansatz I generally n(s) is
taken to be different from the other trajectories,
which all are assumed to be equal]

Model B:

u(t, x) = a(t(1 —x}), a(t) - - n for
I
tl-

(3.4)

Model A is a choice close to the original Veneziano
model. " The form (3.3) of the trajectory restores
factorization and gives back the Veneziano formula FIG. 1. Typical six-point function Ansatz.
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1-x '1 1-z '1 1-x
A(s, f; q', q") =N dx dy dz(1 —xy) '(1-zy) '(1 —xyz)'2

0 0 0

1 —zy
1 —xpz

(1 y) (1 x z) -a(t, [(t-v) {1-xvz) /(1-xv)(t-zv) ) )+1
-a(e, X) —a(4f', S) —a( ivy) -1

(4 1)

where c„c,', and c, correspond to constant mixed-
channel trajectories and [still requiring a'(s)
=0(ls

I
'")], e.g. ,

a(s, y) = a(0)+so'(s(1- y)'). (4.2)

+(q') &(q"),
S Biff

which gives us the pion electromagnetic form
factor

(4.3)

1/2
E(q') = dx x "(' ") (1 —x)" .

a'(m, ')
(4.4)

The dual variables x, y, and z are as described
in Fig. 2, and N is a normalization constant to be
fixed later. As can easily be verified, our am-
plitude (4.1) (corresponding to a i-channel double-
helicity-flip amplitude) has the correct spin struc-
ture in the q', q", s, and t channel.

At the pion pole (i.e., y ~ 0), Eq. (4.1) is reduced
to [this is consistent with Eqs. (2.11) and (2.1V}]

For large q' it behaves like

1/2
&(q )

( 2)c,+1 t(~ 2)

(4 6)

relating c, to the asymptotic behavior of the form
factor. The widely accepted monopole behavior
of the pion form factor would correspond to c, =0.

We now discuss the large-s behavior of Eq.
(4.1). Current algebra requires that this is given

by the j= 1 current- algebra fixed pole (2.10).'c ' "
Changing the dual variables x, y, z to x'=x, y'
= (1-xy) (1-zy)/(1- x) (1-xyz), z' = (1-y) (1-xyz)/
(1-xy) (1—zy), and performing a Mellin transform
we can easily separate a fixed pole at J =1-c,
(corresponding to x, y, z= 1). In order that this be
consistent with the current-algebra, requirement
we must set c, =0. (The same choice of c, will
also lead to scaling as we shall see. ) The fixed-
pole residue turns out to be

N 1 1 N 1
I

tr'(0) . dztzi -a(t z ) (I zt)cl dyt y tet-1(1 zt yi)-cl B (cI cI) dzi zi-a(t z ) (I )cl
~ t(0)

X2Ft(Cl1 Cl& 2Clv z ) 1 (4.6)

which, as a further current-algebra constraint
[postulate (ii)], should coincide with the form fac-
tor F(f). A priori this is not the case although Eq.
(4.6) is very similar to the expression (4.4), i.e.,
has the same large-t behavior as the form factor
(the necessity for having the same trajectory in

the q', q", and i channels is apparent). The

discrepancy, due to the extra z' dependence of the

second integral in Eq. (4.6), can be removed by

adding an infinite number of satellite terms to Eq.
(4.1):

q/2

FIG. 2. Choice of the dual variabIes x, y, and z.

Z~ a(~& )+1 ~ g Z a(~ & )+1+
fft

ftt= 0

(1-y) (1-xyz)
(1-xy) (1-zy)

'

such that

(4 7)

Q c~ z' = u'(0) [B,(ct't ct'), El(ct't c,', 2c,', z'}]

(4.8)

where N is now determined through the normal-
ization of the residue. The satellite terms affect
the normalization of the form factor (4.4) as well,
but leave the general structure unchanged. As
can be deduced from Eqs. (4.1) and (4.6), the
normalization of the form factor and the fixed-
pole residue is generally not consistent. This
need not be the case because of the exceptional
role of the Born term in Eq. (2.9). In the following
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A(s 0 q2 q/2) Csa(0) 2 (4.9)

This corresponds to y ~ 1, but (generally) x, z ff 1

so that we have to expect a q'- and q"-dependent
residue (the same holds for the nonleading fixed
pole, e.g. , the J=0 fixed pole, which will be dis-
cussed elsewhere). The satellite terms (m&0) as
introduced through Eq. (4.7) are suppressed by at

discussion we shall ignore the satellite terms
for simplicity and only comment on how they affect
our final results.

After subtracting the leading fixed-pole contribu-
tion, we obtain the Regge behavior (t=0; q', q"
fixed)

least one power of s. They have the asymptotic
behavior (again subtracting the leading fixed-pole
contribution) C' s "(' ~

Now we will discuss the scaling limit of the
ampli. ude (4.1). We first concentrate on deep-
inelastic scattering, i.e., s, —q', —q" -+~. For
further convenience we keep q' 4 q". The con-
stant c„which was required to be c, = 0 by cur-
rent algebra, will for the moment be left open.
Substituting

(4.10)

we obtain for large negative s, q', and q"

A(s, 0; q', q") = &
1-a

dp exp{ )(a'(0) [~ (q + q' ) (1- (r) + 8 (q
2 —q'2) p +s &]}(1-a)

+& c, 1 ~ pc, 1+~+& c, -1 1+~ &
c, -

X
2 1+(y+P 1+~- P 2 2

4~ —a(O)+1
X

(1+()(+P)(1+~ P)— (4.11)

The integration over A. can be done explicitly, which finally gives

A(s, 0; q', q") =-,' tVF(c, +1)[- a'(0)] " ' 1 1-a
dp & a(0)+& {~[(1 &)2 p2]}4&{~ [('i + &)2 p2]}4(-c&+a(o)-2

-(1-a)

x [-,'(q'+q")(1- a)+2(q' —q") t]+s(r] " (4.12)

This form can be continued analytically to the
physical region s, —q', -q" ~0.

We now expect that vA(s, 0, q', q") scales non-
trivially (i.e., does not vanish in the scaling limit).
A necessary and sufficient condition for this to
happen is c, =0, i.e., the current-algebra result,
as can be verified from E(L. (4.12). This means
there is a strong connection between current alge-
bra and scaling. In other words, once we have
built in the current-algebra fixed pole, we auto-

matically get scaling. Formally this is estab-
lished by the fact that both the fixed pole and the
scaling limit correspond to the behavior near
x, y, a= 1. Ne remark that the same strong con-
nection between the current-algebra, fixed pole
and scaling is true in parton models' and in the
bootstrap model proposed by one of the authors. "

E(luation (4.12) has exactly the form (c, =0 now)
as derived by Gatto and Preparataso from a light-
cone-dominated current commutator, i.e.,

A(s, 0; q', q") = — d()(
-(1-a)

dP p((r, p, 0) [—, (q'+q")(1 —&) + —,'(q' —q") P +so] ', (4.13)

which essentially is a DGS (Deser-Gilbert-Sudarshan)-Nakanishi representation" with all mass terms
neglected. This leads to the following Ansatz for the light-cone spectral function' (the generalization to
t WO is straightforward):

p((r p t) (y- ( 4aa/4((I+ a) 8 ] &+1 {1 [(1 („)2 p2]}cg{ [(1+(y)2 p2]}-4~+4)+a(4 4a/((&+ a) -8 ])-2
2 a'(0) 4

(4.14)
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If we take the satellite terms (4.7) into account,
this becomes

(4.15)

cone expansion incorporates some notion of com-
positeness which will become even clearer when
we discuss the physical meaning of the constant c,'.

The deep-inelastic (scattering) structure function

2v
E, = v W, =—ImA(s, 0; q', q')

From Eq. (4.14) we explicitly see how the light- is now given by

E,(x) = dP E(x, )3, 0)

N X-)2(0)+1 (I X)2c1+1
2 (2'(0)

dP'[l(1- P")]"[2 [(I+«)'-(I- «)' P"]) '1"1""' (4.16)

where «=1/(d=-q2/2v. At threshold, i.e., x-1,
E,(x) behaves like (1-x)"1",which restores the
Drell-Yan relation" [see Eq. (4.5)] between the
threshold behavior of E,(x) and the large-momen-
tum-transfer behavior of the electromagnetic form
factor. For x-0 (&0-~), E,(x) is Regge-behaved,
i.e., E,(x) -x ""(satellite terms: -x ("'" )
as one expects. The residue of the current-algebra
fixed pole at t = 0 is in terms of the structure func-
tion (4.16) given by

—E,(x) (4.17)

as can be verified from Eqs. (4.13) and (4.16). This
also holds in the presence of satellite terms. Equa-
tion (4.17) gives essentially the Adler sum rule"
since the fixed-pole residue is normalized to
unity at t =0.

We now discuss our model in the deep-inelastic
annihilation region, i.e., s, q', q" -+~. The
amplitude (4.1) is well defined in this region in

contrast to the usual Veneziano-type amplitudes.
The der ivation of the light-cone representation
(4.12), however, is strictly restricted to negative
q', q". In order to obtain an appropriate repre-
sentation for the annihilation structure function
well adapted for the discussion of the relation be-
tween the scattering and annihilation region, we
shall continue Eq. (3.12) analytically to positive
q, q". One can show from our assumptions that
this gives the correct structure function. That
means that it is well justified to continue the as-
ymptotic form (3.12), instead of continuing Eq. (4.1)
first and then going to the scaling limit.

The continuation of Eq. (4.12) to the deep-inelas-
tic annihilation region will cross the line

2 (q'+ q") (I- (2) +-'(q' —q") 0 +&(2 = 0

in the integration region, so that we must distort
the integration path. We end up with the repre-
sentation

A(s, 0; q', q") =- j.

dn dP I' a p, 0 —,
' q'+q" 1- a +-,' q'-q" P +so

Cg
(4.18)

where CB is shown in Fig. 3. Because the inte-
gration path C() goes to infinity, Eq. (4.18) does
generally not scale as in the scattering case, but
the high-s, -q', and -q" behavior may depend

on c,'. However, the irr. aginary part always scales
and leads to the annihilation structure function
F, =vW, =(2 v/)vimA(s, ;0'q+i 2q'-fe):

F(x) =- dP F(x, (3, 0)

x-a(0)+1( I)2c1+1N
2a'(0) dPI [

1 (I P12)]c1( 1 [(I+ )2 (I )2 PI 2
j] c1+c1+)x(0) 2 (4.19)

We now ask how F,(x) is related to the analytic continuation of E,(x) to x &1. Generally, we can write

F,(x) = —ReE, (x) + G(x),

where

(4.20)
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G(x) =, sin'){c, x '""(x —I)")"N
{).'(0) (4.21)

which can easily be deduced from Eqs. (4.16) and
(4.19). We see that F,(x) has for noninteger c,
(c, not half-integer either) a branch cut starting
at x=1 which has been taken care of by G(x). For
integer c„G(x) vanishes, giving

F,(x) = —F,(x), (4.22)

F,(x) =F,(x) . (4.23)

This corresponds to the case where F,(x) has no
branch cut, but F,(x) is not given by the analytic
continuation of F,(x), i.e., G(x) &0. The general-
ization of the continuation procedure to include
satellite terms is straightforward.

From Eqs. (4.16) and (4.19) we see that F,(x)
and F,(x) fulfill the remarkable reciprocity rela-
tion (x&1)

F,(x) = x"I 'F, (I/x}, (4.24)

which relates I', and I', in their physical regions.
For c,'=2 this is the well-known Gribov-Lipatov
relation. ' Once the constant c,' is known, Eq.

where F,(x) is the analytic continuation of F,(x).
For half-integer c, we obtain from Eqs. (4.16}and
(4.19}[or (4.20) and (4.21)J

F„... (V') -
J
e'I " ' . (4.25)

Equation (4.25) results from going to the vector-
meson pole in the q" channel (z= 0) and to the
tensor-meson pole in the f channel (z'= 0), and
then taking the limit q' -~ (x~ I). Equation (4.25)
gives rise to a Drell-Yan type of relation between
the large-x behavior of F,(x) [suppose F,(x) is
known] and the decrease of the transition form
factor. The Gribov-Lipatov case, i.e., c,'=2,
corresponds in our model to F„,„, ((I') —

J
q'

~

It is obvious that Eqs. (4.24) and (4.25) also hold
if we include satellite terms.

Equation (4.25) provides another example of how
the light cone carries some information of corn-
positeness which deserves further investigation.

Model B. Now we shall discuss our second mod-
el. In this case we write

(4.24) now allows us to predict the large-x be-
havior of F,(x) if F,(x) is supposed to be known.
Then there remains the question about the physical
meaning of c,'.

If we go back to Eq. (4.1) we find that c,' governs
the large-momentum-transfer behavior of the (2')
-(1 } electromagnetic transition form factor (e.g. ,
~, -p~),

1

A(s, t; q', (I")= dx

Xg -a(q~(y-X)) -a(q' (1-&)) -N(S(1-3)) )-1

&(I ) (I x z)" -a{(()-{{)-v){t-xvv)/{)-vv){)-vv) )))+)
X (1-xy) (1-zy)

"f,(e * ((—*))f, ( v
' *((—*))f.(' ()—v) ) f.(& ( —

( „ ( I) , (4 v ())

with real analytic functions c(,f, of the type (3.4).
The dual structure of this amplitude is very much
the same as that of model A except that it does not
factorize except for the pion pole and has no Vene-
ziano limit. However, it provides a more realistic
description of high-energy large-angle scattering.

Our following discussion will be much like in
the case of model A. Through factorization at the
pion pole we obtain the pion electromagnetic form
factor

v( *) (f.(~,*)f.(0) "* '„.„.„.), (( „).,
n'(m, ')

(p

-(J-a)

2

g
2

q
2

q
2 + q

2
(J-aj+sa

){f)((I'(I- x)), (4.27)

which for large q' behaves like

v( .
)

( f.( .*)f.(0))'*

FIG. 3. The integration path C&. The wavy 1ines
indicate branch cuts of the spectra1 function.

x f dye 'y)( p)
0
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if the integral exists, i.e., f, &O(t(, ' ').
As in model A the amplitude (4.26) is forced to

have the current-algebra fixed pole (2.10). This
again requires c2 =0. Employing the same tech-
nique as before, we obtain the residue

QQ

f,*(0)) &qf, ( q) )),(-c,', ,')
0

dx z —.('~'-"»(I- s } )f,(t(I- x ))

the remaining discrepancy as before by adding an
infinite set of satellite terms such that

= f,'(o) J &wf. ( w)-
m=0 0

x [B~(c,', c„'),E,(c,', c,', 2c,', z ')] '.
(4.30)

Now we shall investigate the scaling properties
of the model amplitude (4.26). Substituting

(4.29)
u = (I'(I- x), u = q" (1—g), u! =s(1—y),

(4.31}

In order to bring Eq. (4.29) into accordance with

the pion form factor, we take f, =f, and remove
we obtain the deep-inelastic (scattering) structure
function (again leaving c, open for the moment)

1 1 1 x 2c1+1
F,(x) =—(e') "-

27 x x
c c —c(0}+1

A(0}+C2 -2C1+1
d w(- u)'i (- u)'& w "'" w — '

(u + u)x

1—x cf(0) -c1+c1-2
u w — (. f,(u)f, (v) Imf, (w) f,(0) .

(4.32)

First of all, we notice that Eq. (4.32) scales nontrivially if and only if c, =0 as before. Moreover (c, =0
now), E,(x) is Regge-behaved and obeys the Drell-Yan relation" [see Eq. (4.28)] as the integral in Eq.
(4.32) stays finite in the limit x- 1, provided that s,& 0.

The structure function for deep-inelastic annihilation is similarly given by

2C1+ 1 ] C(0) 2C1+ 1

F,(x) = —— du dv du u'& u'~w " " u- (u+v)2mx x 0 0 s0

1—x CX(0} C1+ C1 2

x u, — u w — ( f, (u+is) f, (v —ic) Imf, (w) f,(0) .

(4.33)

The main difference between the structure func-
tions (4.32) and (4.33) is that the u and v integra-
tions in Eq. (4.33) are along the cuts of the func-
tions f,

The generalization of Eqs. (4.32) and (4.33) to
satellite terms is straightforward. We simply
have to replace a(0) by o.(0) -m, multiply by c,

E,(x) = —HeF, (x) +G(x)

like Eq. (4.20), where

(4.34)

and sum over m.
Now we ask how F,(x) is related to the analyt-

ically continued (in x) structure function E,(x).
The answer is

1 1 1 2c1+1
G(x) =—— dg

21T x x
0 0

00 x —n(0) -2c'+1
1

du u') v'~ w " u — (u+v}
x

1-x 1-x a(0) -c1+c1-2
Imf, (u) Imf, (u) Imf 2(w) f,(o) .

(4.35)

E,(x) = —E,(x) . (4.36}

This result is similar to that of Dahmen and
Steiner. " Here the extra term G(x) corresponds
to the triple discontinuity of the amplitude (4.26).
If the function f, has zero discontinuity, we have

In order to prove Eq. (4.34), we rotate the u and

u integrations in Eq (4.32) to an .integral along the
positive real axis and then continue in x. To avoid
branch-cut contributions from the exponential
factors the rotation has to be over the upper
(lower) u and v plane if one intends to approach
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the real-x axis (1 «x& ~) from above (below). If
the function f, is analytic except for the cut (see
Sec. III}, this rotation is always possible. This
way we obtain for the analytic continuation of E,(x)
as (say) x-Rex+te the same expression as Eq.
(4.33), but f,(v —ie} replaced by f,(u+te), which
proves Eq. (4.34).

We notice that E,(x) also fulfills the Dre11-Yan
relation. " A Qribov-Lipatov relation'3 cannot,
however, be derived even if Imf, =0.

V. DISCUSSION

Both of our models discussed in Sec. IV fulfill
the requirements (i)-(vi) listed in Sec. II. Model

A, which stands in close analogy to the general-
ized Veneziano model, appears to be very appeal-
ing since it factorizes and has some very attractive
consequences in the scaling region: It is reduced
to a light-cone representation and gives rise to
a nem relation between the large-x behavior of
E,(x) and the asymptotic behavior of the electro-
magnetic (2') -(1 ) transition form factor, to-
gether with a Qribov-Lipatov-type of reciprocity
relation. Model B does not factorize and corre-
sponds to the original CTHKZ model2' which was
invented to cure the bad analytic properties of the
Veneziano model. This model probably would
have been abandoned by the purists among the
dualists, but (in the four-point function version)
it is a first attempt to incorporate the power lams
for the energy dependence of hadronic processes
at fixed angle"''6 in a dual model. This is an
interesting subject to be investigated in more
detail.

We have (again) the appealing relationship be-
tween the current-algebra fixed pole and scaling
in deep-inelastic electron scattering and annihi-
lation. In both models the fixed pole and sealing
arise from the same limit (i.e., x, y, s = 1). In
this limit the amplitude does not depend on the
details of the trajectory, i.e., on the resonance
spectrum, anymore as long as the trajectory
guar antees Mandelstam analytic ity. Hence, scaling
is not a matter of the particular form of the spec-
trum of the vector mesons as proposed by the
generalized vector-meson-dominance model. "
The divergence condition ean be fulfilled in our
model without imposing restrictions on the sealing
functions. One can easily check from Eq. (2.9)
that in the scaling region only A(s, t; q', q"}con-
tr ibutes.

In our model we have taken only one (exchange-
degenerate) trajectory into account and the Pom-
eron has been left out so far. Various possibil-
ities of how to include the Pomeron by hand have
been reported. " In these models scaling of the
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APPENDIX

The tensor C„,(s, t) can be rewritten in the form

C„„(s,t) = C~„(s, t ) (+q„'a„+n,„q„—qn, g„,)
z(t)
gg

where

q" C„,(s, t) =C„„(s,t) q" =0 (A2)

so that the divergence relation (2.7a} is explicitly
fulfilled. By construction, C„,(s, t) may be ex-
panded in terms of a gauge-invariant tensor basis
employing the projection formalism of Bardeen

Pomeron contribution requires a~(0) =1 similar
to scaling in strong interactions and bears no
resemblance to the current-algebra construction.
Alternatively, one could think of a, Pomeron being
dual to some background trajectory according to
the Harari-Freund hypothesis" since, in our ap-
proach, we are not restricted to linear trajec-
tories. This again mould not fit into the current-
algebra construction scheme and hence the Pom-
eron would couple with arbitrary strength. How-
ever, in this case one is not forced to set o~(0) = I
such that the Pomeron contribution scales. In
order to consistently include the Pomeron in our
scheme the Pomeron has to be accompanied by an
exchange-degenerate C = —1 "photon" trajectory, ~'

meaning that the Pomeron and its exchanged-de-
generate partner are dual to themselves. So, if
the reader is milling to accept a "photon" trajec-
tory being exchange-degenerate to the Pomeron,
we have a perfect model (the extension of our
formalism to two trajectories is straightforward).
W'e feel, however, that this concept is far from
being settled but deserves further investigations.

Concluding, we remark that me have worked out
a restrictive model for virtual Compton scattering
with a large number of good properties, especially
current algebra, analyticity, and Bjorken scaling.
There remains the problem of constructing general
current amplitudes with factorization even on the
daughter level. Despite this we feel that our mod-
el provides a useful means for understanding deep-
inelastic electron scattering. The model can be
extended straightformardly to various other pro-
cesses as yy- nm and yy- any resonance.
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and Tung, 4' i.e., q'q "I'„,—qr q "I'„,—qaq 'f4-, +(qn, )'I'„=0,

C„,(s, t) = Q I"„„A„(s,t),
n= 1

(A3)

I'„v + q&I'„v

(A5)

where

I
Ipv =qq gpv —qpqv ~

I„,= qq' A„6v —qhq„' 6, —q' AA„q„+ q6q'3 g„„,
I'„,= qq' q„h, —q'q„h, +q'n, q„q„+q'q' dg„, , (A4)

Ipv qq +p qp q+qp qv q +pqv + q q+gp v

I'„„=qq'q„q„' —q q„'q,'- q"q„q, +q'q"g„„.

In order to show that Etl. (Al) has a similar rep-
resentation we have to make sure that the second
term on the right-hand side of Eq. (Al) does not
give rise to a kinematical singularity at qq' =0.

We notice that the tensors I'„', * '' and I'„„
= q„'6, +h„q, —qbg„„become linearly dependent
at qq'=0 [qq'=-,'(t —q'- q")]:

On the other hand, the divergence condition (2.8)
tells us that A.,(s, t) must be of the form

I y t) 2 r2
A, (s, t) =, ~+, A(s„ t)qq' s -m„' qq'

+terms nonsingular at qq'=0 . {A7)

This means that the kinematical singularity of the
second term of Eq. (Al) is canceled by the counter-
part in A, (s, i) because of the linear dependence
(A6). There is still a further possible singularity
in A(s, t) [Eq. (A7)]. But this is to be canceled by
similar terms in A„A„and A, employing relation
(A5).

The tensor N„, may be expanded in terms of the
tensor basis (A4) so that the divergence relation
(2.7b) is explicitly fulfilled.
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We find that the single-particle distribution EdN/d p for an expanding relativistic gas de-
scribed by a distribution function obeying the Boltzmann transport equation is not of the form
of an integral over collective motions of a velocity weight function times a "Lorentz-transformed"
rest-frame distribution function. This casts doubt on the algorithms of Milekhin and Hagedorn
for determining the single-particle distribution function in their models of particle production.
For the hydrodynamic model, the correct algorithm is presented.

With the advent of new high-energy accelerators,
there has been a revival of interest in many-body
approaches to particle production. In particular,
the statistical thermodynamic model of Hagedorn'
and Landau's hydrodynamic model' have had con-
siderable success in fitting single-particle in-
clusive data. Recent review papers have summa-
rized the history and successes of these models. ' '
In both models, one assumes that the collision
process yields a distribution of collective motions.
In Hagedorn's approach these collective motions
are called fireballs; in Landau's approach the
collective motions are that of the hadronic fluid
and one has an entropy and energy distribution in
terms of the fluid velocity. In both models one
assumes that in the local rest frame the distribu-

tion of momenta is isotropic and is described by
either a Bose or a Fermi distribution of the ob-
served particle.

The question to which we address ourselves is
whether the momentum distribution in the center-
of-mass frame is given by the probabi1. ity of
finding a particle with collective velocity v times
the Lorentz-boosted thermal distribution normal-
ized to the total number of particles. The invari-
ant single-particle distribution that follows from
this assumption is' '

dN p dN g(E, T(v))
d'p = d'v a(T(v))

where E and T are, respectively, the energy and
temperature in the comoving or local rest frame


